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synopsis 
An improved method for the numerical evaluation of the convolution integral in the 

relationship between creep compliance and relaxation modulus is discussed. The better 
approximation is obtained by the assumption that both functions can be assumed to be 
linear within a series of increasing time intervals which do not change as the calculation 
progresses. The calculation is carried out on both hypothetical and real examples which 
substantiates its applicability and accuracy. 

INTRODUCTION 
It is well known that as a direct consequence of the superposition princi- 

ple, the stress and strain in a linear viscoelastic material may be related to 
each other through the relaxation modulus or creep 

or 
L [ G ( t ) ] L [ J ( t ) ]  = l/sZ (3) 

where L indicates the Laplace transform (see, for examp.?, Churchil13) : 

L [ x ( ~ ) I  = J- X(t)e-”dt. (4) 
0 

Alternately, eq. (3) may be expressed in the form of a convolution integral 

It J ( t  - r ) G ( ~ ) d r  = t 

or equivalently It G(t - r )J(r )dr  = t .  

(5)  

Another form of this relationship may be derived by using the fact that 

L[F‘(t) J = sL[F(t)  J - F(0)  (7) 
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where F( t )  is an appropriate well-behaved function, F’(t) is its derivative, 
and F(0)  is its value at t = 0. When this is substituted into eq. (3), and 
replacing F( t )  with G(t) or J( t ) ,  we obtain 

L[G’(t)]L[J(t)] = l/s - G(O)L[J(t)] (8) 
or equivalently 

L[J’(t)]L[G(t)] = l/s - J(O)L[G(t)] (9) 
which also can be expressed in a convolution integral form 

I ‘ J ’ ( t  - T ) G ( T ) ~ T  = 1 - J(O)G(t) 

or i‘ G’(t - T ) J ( T ) ~ T  = 1 - G(O)J(t). 

Two more equivalent representations can be obtained by switching the 
roles of the functions inside each of the integrals. In any situation where 
one wishes to convert from one viscoelastic function to the other or where 
one has time-dependent stress and  train,^ these types of integral equations 
must ultimately be evaluated. 

A numerical solution to eqs. (5) and (6) has been performed in the 
past.6S6 This method works very well considering the approximations 
made. It does suffer from drawbacks. The calculated values are not 
those of any particular time, but are a mean value within an interval of 
time, and the conversion of compliance to modulus is extraordinarily 
sensitive to “noise” in the data. The following sections contain a more 
sophisticated numerical evaluation of the integral equations involved. It 
is free of the drawbacks of the previous treatment and has proven itself to 
be practical for almost any type of data. 

NUMERICAL SOLUTION 
It has been found through experience and mathematical reasoning that 

of the many equations presented in the previous section, different forms 
are to be used depending on which is the known function. If modulus, 
G(t), is known and compliance, J ( t ) ,  is to be calculated, eq. (6) should be 
employed. If compliance is known, eq. (10) is the most suitable. The 
known function always occupies the inverse coordinate position, G(t - 7 )  

or J ( t  - T ) ,  in order to avoid restrictions on the times at  which the known 
function is tabulated. The evaluation of the integral on the left of both 
eqs. (6) and (10) is essentially the same for both forms and will be presented 
in the general form 

it X ( t  - T )  Y(T)dT 

where X is the known function and Y is that to be calculated. 
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Actually, X is not known at  all times, but is tabulated at  discrete times. 
We introduce the notation X [ t ( i ) ]  as the value of X at  t( i)  for i = 1 to n, 
where t(1) = 0.0, and assume that X can be accurately represented by a 
linear relationship between t ( i )  and t ( i  - 1 ) .  

This method can handle time intervals chosen in any way, but has been 
formulated for the specific case when t ( i  + 1 )  - t ( i )  > t ( i )  - t ( i  - 1). 
This is necessary in order to cover the many decades of logarithmic time 
which compliance or modulus data normally cover. In the case when 
t ( i  + 1) - t ( i )  = t ( i )  - t ( i  - l), the entire calculation is simplified greatly. 
Details of this can be supplied on request. If modulus is the known 
function, then X [ t ( i ) ]  = G [ t ( i ) ]  at  each time. If compliance is known, 
the J values must be calculated using 

(13) 
J [ t ( i  + l ) ]  - J [ t ( i  - l ) ]  

t ( i  + 1 )  - t( i  - 1) 
X [ t ( i ) ]  = J ' [ t ( i ) ]  = 

for i = 2 to n - 1, and 

We then must perform the integration of integral (12) between t = 0 

Thus, integral (12) becomes 
and t = t(k) for k = 2 to n. 

The linear relationships which we will use to approximate the functions 
within the specific time intervals are 

where t( i  - 1 )  2 T 5 t( i ) ,  and 

where t ( k )  - t(q) 5 T 5 t(k) - t(q - 1). The correctness of these ex- 
pressions can be verified using Figure 1,  which shows hypothetical Y ( T )  
and X(t (k)  - T )  functions with k = 4. We now define tw( j ) ,  wherej = 1 
to 2k - 2,  as a time vector which contains all the times t(i), i = 1 to k,  
and t(k) - t( i) ,  i = 2 to k - 1,  in order of their magnitude (see Fig. 1 ) .  
The purpose of choosing time intervals in this way is to maintain a reason- 
ably constant degree of approximation of the actual functions by the 
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= t(4)- t(4) 
T 

Fig. 1. Example showing how time intervals are marked off using a hypothetical Y and 
X with k = 4. 

following summation of integrations, which is a direct consequence of 
integral (16) : 

2 k - 2  

The substitution of these linear functions of X and Y in quantity (19) 
thus replaces the product of the integral of the linear X function over each 
time interval and a mean value of Y for that interval as specified in the 
algorithm of reference 5. We also make the specification that tw(kq) is 
the time at  which the last value of Y is known. For example, in Figure 1 
we would be calculating the value of Y ( t ( 4 ) ) ,  and the last-known value of Y 
would be at  t(3) which is t w ( 4 ) ,  and therefore kq = 4. The summation 
of eq. (19) is therefore broken into two parts: 

E2 JtW( j )  X(t (k)  - T ) Y ( T ) d T .  3 J'"0' X ( t ( k )  - T)Y(T)dT + 
j = k q + l  t r ( i - 1 )  j=2 tzo(3-1) 

(20) 
The first is the sum of all the integrals for which we know all values of both 
functions. The second part contains the integrals in which Y(t(k))  is the 
only unknown. Of course, the previous Y values have already been calcu- 
lated starting at k = 2. 

Before proceeding further, the following simplifying substitutions can be 
used in eqs. (17) and (18) : 

Y(t( i ) )  - Y(t(i - 1)) 
t ( i )  - t(i - 1) 

2 2  = 
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23  = Y(t(i - 1)) - t(i - 1)-22 

24 = X(t(q)) + (t(q> - t(k)).Z1. 

(23) 

(24) 

When eqs. (17) and (18) are substituted into the integrals of the first sum- 
mation of quantity (20), the following result is obtained upon integration : 
kq  

= 2  
C [23*24*( t~ ( j )  - t ~ ( j  - 1)) 

+ (24.22 + 23.21) * (tw(j)' - t ~ ( i  - 1)2)/2 

+ Z2.Zl.(tw(j)' - t ~ ( j  l)a)/3] (25) 

The second summation yields the following: which we will designate 22. 
2 k - 2  

j = k q + l  
Y(t(k - 1)). C [24.(tw(j) - t w ( j  - 1)) 

2 k - 2  

C 
j -kq-I-1 

+ Z l - ( t ~ ( j ) ~  - t ~ ( j  - 1)')/2] + 22. [24*(tw(j)' - ~ W ( J  - 1)')/2 

+ 21. ( t ~ ( j ) ~  - t ~ ( j  - 1)')/3 + t(k - 1) * (24. (tw(j) 

- tw(j - 1)) + Z l * ( t ~ ( j ) ~  - tw(j - 1)')/2)] (26) 

which we will designate 

Y(t(k - l))-ZV + 22.ZW. 

Quantity 20 thus becomes 

(27) 

At this point the derivation differs according to the identity of X as 
discussed previously. If X is G, then quantity (28) is set equal to t ( k )  
and solving for Y [ t (k )] ,  we obtain 

If X is J', the quantity (28) is set equal to 1 - X(l)Y(t(k)), and 

Given the first value of Y ,  

each succeeding value can then be calculated. 
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EXAMPLES 
Figure 2 shows the three curves obtained from the hypothetical relaxation 

equation 

for the values of B indicated on the figure; 10 and 20 points per decade 
of logarithmic time were used for B = 0.2 and 0.5, respectively. For B = 
1.0, the number per decade varied from 10 at  log time = -3 to 200 at  log 
time = 2. This wm necessary because of the severe decay of this function. 
As in the derivation, the functions were assumed to be linear within each 
time interval. Figure 3 shows the corresponding J ( t )  curves as calculated 
using eq. (29). In the case B = 1.0, J ( t )  can be expressed analytically as 

G(t) = e-'' (32) 

J ( t )  = 1 + t .  (33) 
The conversion from G(t) to J( t )  was accurate to within 0.02% at  log t = 
1.0. G(t) was then recalculated from the J( t )  data using eq. (30). Figure 
4 shows the absolute per cent error in the data which were returned from 
the calculated J( t )  curves using eq. (30) as a function of the magnitude 
of the original G(t). The difference between the B = 0.5 and B = 0.2 
conversions is due to the number of points taken per decade of logarithmic 
time, and the B = 0.2 could be improved significantly by using more 
points. 

Figures 5, 6, and 7 show the relaxation moduli and the calculated creep 
compliance curves for three experimentally determined master curves. 
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Fig. 2. Logarithm of at) vs. log time for three analytical relaxation functions. 
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Fig. 3. Creep functions corresponding to relaxation functions of Fig. 2 as calculated by 
eq. (29). 
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Fig. 4. Per cent absolute error of reiaxation functions returned by eq. (30) using 
data from eq. (29) with respect to original data plotted as a function of negative loga- 
rithm of the original. 
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Fig. 5. Relaxation modulus from reference 7 and creep compliance calculated using 
G(t) and J( t )  are in 5 points per decade of logarithmic time for S109 polystpene. 

dynes/cm* and cm*/dyne, respectively. 

I 2  

t PRX-1076 Polystyrene 
T=115*C 
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Fig. 6. Relaxation modulus and creep compliance from reference 8 for PRX-1076 
Units are same as in polystyrene using 10 points per decade of logarithmic time. 

Fig. 5. 
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NBS Polyisobutylsns 
T = 100V 

Fig. 7. Relaxation modulus and creep compliance for NBS polyisobutylene from 
reference 9 using 10 points per decade of logarithmic time. 'Units are same as in 
Fig. 5. 

These samples range from the low molecular weight PRX-1076 to the 
rather high molecular weight NBS polyisobutylene. In all three cases, 
the moduli.returned by eq. (30) from the compliance calculated by eq. (29) 
were well within 1% of the original data. 

It must be noted that the polyisobutylene conversions were performed in 
two parts. The first was for the times between the points where 

E(t).D(t)  = 1 (34) 

at approximately log time = -14 and -4. The second was for all log 
times greater than -4. This procedure was made necessary by numerical 
errors in the calculation in a region of approximately constant modulus or 
compliance. This proved to be no serious fault. The restriction set by 
eq. (34) seems to be a necessary and sufficient condition for the exclusion 
of all the previous data as negligible, as long as X ( t ( 1 ) )  for the second 
calculation is taken as the plateau value. For example, in the second part 
of the polyisobutylene conversion, log E(0) or -log D(0) would be ap- 
proximately 6.90. 

We offer a complete listing of the programs used in this paper to anyone 
upon request. They are written in Fortran IV language and were run on 
an IBM 360/91. 

We have attempted to keep the names in the previous derivation con- 
sistent with those in the programs in order to reduce confusion. These 
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programs require approximately 40,000 locations of main core and have 
execution times of approximately 3 seconds for 100 points. 
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